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The sextet polynomial of non-branched cata-condensed benzenoid molecules is 
proved to be related (Eq. (3)) to the characteristic polynomial of a tree. 
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I. Introduction 

Several recent investigations [1, 2] have shown that resonance theory gives 
satisfactory quantitative results when applied to benzenoid hydrocarbons. The 
combinatorial background of this theory was also studied [3, 4]. Hosoya and 
Yamaguchi demonstrated [-4] that various resonance-theoretical approaches can be 
unified by means of the sextet polynomial. For a benzenoid hydrocarbon G, the 
sextet polynomial B~(X) is defined as 

Be(X ) = ~ r(G, k) X k 
k = 0  

where r(G, k) is the so called "resonant sextet number",  namely the number of ways 
in which k mutually resonant sextets can be selected from G. m is the maximal 
number of mutually resonant sextets. By definition, r(G, 0) = 1. Further details on 
these resonance-theoretical notions can be found in Refs. [-4, 5]. 

Let the benzenoid molecule possess R rings. Then instead of the sextet polynomial 
we can consider another polynomial BB~(X), 

[(R + 1)/21 

BBdX) = XR+IBa( - 1/X2) = 2 ( -  1) k r(G, k) X R+l-2k (1) 
k = 0  

The form of BB~(X) resembles much to the characteristic polynomial of a tree (i.e. of  
an acyclic graph) with R + 1 vertices (see Eq. (2)). 
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No simple and generally valid algorithm for the calculation of the sextet 
polynomials is known at present. The usual way of determining Bc(X ) by 
considering all possible selections of resonant sextets in G is not only rather tedious, 
but is also unreliable for complicated polycyclic systems. In the present paper it will 
be shown that the calculation of BG(X ) for non-branched cata-condensed benzenoid 
(NBCCB) 1 molecules is reduced to the finding of the characteristic polynomial of a 
tree T. This tree can be easily deduced from the structure of the NBCCB network. 

Before starting with the consideration of the properties of the sextet polynomial, we 
shall describe a class of trees. 

Let P,  denote the path / with n vertices. The tree T(tl, t2 . . . . .  t,) is obtained by 
joining t~ new vertices to thej ' th  vertex of P,  (j = 1, 2 . . . .  , n). Thus t i is an integer or 
zero. If ta =t2 . . . . .  t , =0 ,  then T(t~, t2,. . . ,  t , )=P,.  The number of vertices of 
T(tl, t z . . . , t , )  is N = t ~ + t z + . . . + t , + n .  For example we present T(4), 
T(2, 1, 0, 0, 0) and T(1, 1, 3, 0, 0, 2). 

T(4) T(2, 1, 0, 0, 0) 

�9 

T(1, 1 ,3 ,0 ,0 ,2 )  

The characteristic polynomial of a tree T has the form [73 : 

[N/Z] 

Pz(X) = ~ ( -  1)ap(T, k)X u-zk (2) 
k = 0  

where p(T, k) is the number of ways in which k non-incident edges can be selected 
from T. 

The analogy between expressions (2) and (1) is evident. In the following we will 
demonstrate that there exists indeed a tree T such that for a particular class of 
benzenoid molecules, 

B B d X  ) = PT(X) (3) 

1 A molecular network which is composed entirely of regular hexagons is called benzenoid. If no three 
hexagons have a common atom, the system is called cata-condensed (in the opposite case, the system is 
peri-condensed). If every hexagon of a cata-condensed system has at most two neighbouring hexagons, it 
is said to be non-branched. [6] 
2 The "path"  (or "chain") with n vertices is the graph with the properties that the j ' th  vertex is adjacent 
to the ( j -  1)'th and ( j +  1)'th, and only to them ( j=2 ,  3 . . . . .  n - l ) .  
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2. Some Topological and Resonance-Theoretical Properties of  NBCCB Molecules 

Let us consider an R-cyclic NBCCB system (3 and denote by R~') (]" = 1, . . . ,  R) its 
rings. These rings will be numbered successively, so that the ring R(j)  is 
neighbouring to the rings R ( j -  1) and R ( j +  1). Hence, R(1) and R(R) are terminal 
rings. Of course [4, 5], R(j) presents also a resonant sextet. 

A ring in a NBCCB hydrocarbon can be annelated exactly in two distinct ways, 
namely in a linear (L) or in an angular (A) mode. 

L-mode A-mode 

Therefore, the ring R(j) can be labelled by a symbol S j, where either Sj = L or Sj = A. 
The two terminal rings can have arbitrary labels, but it is convenient to denote them 
by L. Thus an ordered sequence S = S ( G ) = S I S 2 . . .  S R of L and A symbols (an 
"L, A-sequence") can be associated with every NBCCB system G. For  example, 
molecules 1 and 2 have S ( 1 ) = L L L L  and S(2)= L A A L A A L A L .  

1 2 

For brevity we will denote L L  by L 2, L L L  by L 3 etc. 

In a general case the L, A-sequence S is of the form 

S =  (L  )S lA(L )S2A . . . (L  ) s .-  1A(L )S, (4) 

where s~ are non-negative integers. In other words, the rings R(s I + 1), R(Sl +s2 
+2 ) , . . . ,  R(s 1 + s 2 +  �9 - - + s , - 1  + n -  1) are assumed to be of A-mode, while all 
others of the L-mode. Since G has R rings, R = S l  + s z +  �9 �9 + s , + n -  1. 

Theorem 1. Eq. (3) holds for every G which is a NBCCB hydrocarbon. If the L, 
A-sequence of G is given by Eq. (4), then T =  T(Sl, s2 . . . .  s,). 

Proof.  If Tis a tree with R edges (and therefore with R + 1 vertices), such that for all 
i, j the edges el, ej are mutually non-incident if R(i) and R(.i) are mutually resonant, 
then 

p(T ,  k ) =  r(G, k) 

from which Theorem 1 is deduced straightforwardly. Therefore, in order to 
demonstrate the validity of Theorem 1, it is sufficient to prove the following 
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Theorem 2. The edges of  the graph T(sl, s2 . . . . .  s,) can be labelled in such a way that 
any pair of  edges ei, ej is non-incident, whenever R(/) and R(j) are mutually resonant 
in G, with S(G) being given by Eq. (4). 

Proof. Let us consider the ring R(p) of  G. Then the sequence S is of the form 

S . . . .  A(L)"- 1Sp(L)b- 1A... (5) 

where a and b are integers. In other words, we assume that R(p - a) and R(p + b) are 
the nearest (relative to R(p)) angularly annelated rings. 

Now, it can be verified straightforwardly that the sextets R ( p - a )  . . . .  , R ( p - 1 ) ,  
R(p + 1) . . . .  , R(p +b )  can never be resonant if the sextet R(p) is resonant. This 
occurs simply because the double bonds in R ( p - a )  . . . .  , R ( p - 1 ) ,  R ( p +  1) . . . .  , 
R(p + b) become localized after R(p) is deleted from G. Let us illustrate this on two 
examples. The resonant sextet R(p) is indicated by a circle. 

Sp=L, a=2, b=3 

) 

Sp=A,a=2, b=3 

Furthermore,  since the double bonds in the rings R(1) . . . . .  R ( p - a - 1 ) ,  R(p + b 
+ 1 ) , . . . ,  R(R) are not localized when R(p) is deleted from G, the sextets R(p), R(i) 
and R(j)  are mutually resonant, where i =  1 , . . . ,  p - a -  1 and j = p  + b + 1 , . . . ,  R. 

This discussion leads to the following conclusion. 

a) I f  Sp=A,  any two sextets R(i), R(j)  are mutually resonant for i = p - a  
+ l , . . . , p - 1  a n d j = p + l ~ . . . , p + b - 1 .  

b) I f  Sp = L, no two such sextets R(i), R(j)  are mutually resonant. 
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Let us now represent every ring R(j) of G by an edge ej and try to construct a tree T 
with the properties required in Theorem 2. Then statements a) and b) read, 

a*) If Sp = A, any two edges ei, ej are mutually non-incident if i =p  - a + 1 . . . . .  
p - 1  and j = p +  1 . . . . .  p + b - 1 .  

b*) If Sp = L, any two of such edges ei, e~ are incident. 

This situation can be uniquely realized by the graph fragments 3 (for Sp = A) and 4 
(for Sp=L): 

a**) If Sp=A 

e i ej  

--�9169 
ep_ a ep ep+ b 

b**) If Sp=L 

4 

But the graph fragments 3 and 4 are exactly Theorem 2 applied to Eq. (5). The 
extension of a**) and b**) to the whole sequence S given by Eq. (4), completes 
finally the proof  of Theorem 2. 

Corrolary 1. Every tree T(tl, t2 , . . . ,  t,) can be associated with an L, A-sequence 
(Eq. (4)) and thus with a class of NBCCB molecules. 

For  example, the trees T(4), T(2, 1, 0, 0, 0) and T(1, 1, 3, 0, 0, 2) correspond to 
sequences LLLL, LLALAAA = LLALAAL and LALALLLAAALL,  respectively. 

Corrolary 2. If  two NBCCB systems have the same L, A-sequence, and therefore the 
same associated tree, they are indistinguishable from the viewpoint of resonance 
theory. The smallest such molecules are 5 and 6; both have an LAAL sequence, with 
P5 being their associated tree. 

Using Theorem 1, it is rather simple to construct the tree T associated with any 
NBCCB hydrocarbon. For  example, the trees corresponding to molecules 1 and 2 
are T(4) and T(1, 0, 1, 0, 1, 1), respectively. 
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5 6 

ioI 
T(1, 0, 1)-=P5 

Finally, it is important to note that the validity of Theorem 1 cannot be simply 
extended, neither to branched cata-condensed, nor to peri-condensed molecules. 
Namely, for the smallest branched cata-condensed (7) and peri-condensed (8) 
benzenoid systems, the corresponding r(G, k) values cannot be related to the 
coefficients of the characteristic polynomial of any graph. 

7 

B7(X ) = 14- 4 X +  3 X  z + X  3 B s ( X )  = 1 + 4 X + X  z 

3. Discussion 

Theorem 1 is, as to the author's knowledge, the first case that graph spectral theory 
plays some role in the theory of conjugated compounds independently of  the H~ckel 
molecular orbital model. The main applicability of our result is in determining 
Ba(X)'s. There are well known simple graph-theoretical techniques [-8] for the 
calculation of the characteristic polynomial of a tree. Hence, for example, the 
characteristic polynomials of T(4), T(1, 0, 1, 0, 1, 1) and T(1, 0, 1) are X 5 - 4 X  3, 
X 1~ - 9X 8 + 26X 6 - 27X 4 + 8X 2 and X 5 - 4X 3 + 3X, respectively. Therefore, BI(X ) 
= 1 +4X, B2(X ) = 1 + 9 X + 2 6 X  2 +27X 3 + 8 X  4 and Bs(X)=B6(X)= 1 + 4 X + 3 X  2. 
The evaluation of B2(X ) without the use of our theorem would be rather tedious. 

Since BG(1) is equal to the number of Kekule structures K=  K(G) of the molecule G 
[4], from Eq. (3) it follows, 

[(R + 1)/2] 

K(G)=  ~ p ( T , k ) = Z  T 
k=0 

where Z T is the topological index of Hosoya [7, 9]. The K value of the molecule 
2 ( = 71) could hardly be obtained by "brute force" enumeration. 

As a final application we mention that recently Aihara [2] found that the roots of 
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Be(X ) can be used for the calculation of  the resonance energy (and thus aromaticity) 
of  G. Because of  Eq. (3), these roots are closely related to the spectrum of  T, and 
therefore the resonance energy of  a NBCCB hydrocarbon is obtained from the 
spectrum of  its associated tree T. 
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